首页> 外文OA文献 >Three-dimensional variational data assimilation for a limited area model Part I : General formulation and the background error constraint
【2h】

Three-dimensional variational data assimilation for a limited area model Part I : General formulation and the background error constraint

机译:有限区域模型的三维变分数据同化第一部分:一般公式和背景误差约束

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A 3-dimensional variational data assimilation (3D-Var) scheme for the HIgh Resolution Limited Area Model (HIRLAM) forecasting system is described. The HIRLAM 3D-Var is based on the minimization of a cost function that consists of one term J(b). which measures the distance between the resulting analysis and a background field, in general a short-range forecast. and another term J(o). which measures the distance between the analysis and the observations. This paper is concerned with the general formulation of the HIRLAM 3D-Var and with Jb. while the companion paper by Lindskog and co-workers is concerned with the handling of observations, including the J(o) term, and with validation of the 3D-Var through extended parallel assimilation and forecast experiments. The 3D-Var minimization requires a pre-conditioning that is achieved by a transformation of the minimization control variable. This change of variable is designed as an operator approximating an inverse square root of the forecast error covariance matrix in the model space. The main transformations are the Subtraction of the geostrophic wind increment, the bi-Fourier transform, and the projection on vertical eigenvectors. The spectral bi-Fourier approach allows one to derive non-separable structure functions in a limited area model. in the form of vertically dependent horizontal spectra and scale-dependent vertical correlations. Statistics have been accumulated from differences between +24 h and +48 h HIRLAM forecasts valid at the same time. Results from single observation impact studies as well as results from assimilation cycles using operational observations are presented. It is shown that the HIRLAM 3D-Var produces assimilation increments in accordance with the applied analysis structure functions, that the fit of the analysis to the observations is in agreement with the assumed error statistics. and that assimilation increments are well balanced. It is also shown that the particular problems associated with the limited area formulation have been solved. These results, together with the results of the companion paper, indicate that the 3D-Var scheme performs significantly better than the statistical interpolation scheme.
机译:描述了一种用于高分辨力有限区域模型(HIRLAM)预测系统的3维变化数据同化(3D-Var)方案。 HIRLAM 3D-Var基于包含一个项J(b)的成本函数的最小化。它测量结果分析与背景场之间的距离,通常是短期预测。另一个术语J(o)。它测量了分析和观察值之间的距离。本文涉及HIRLAM 3D-Var和Jb的一般公式。而Lindskog及其同事的伴随论文则涉及到包括J(o)项在内的观测数据的处理,以及通过扩展的并行同化和预测实验对3D-Var的验证。 3D-Var最小化需要通过最小化控制变量的转换来实现的预处理。变量的这种变化被设计为近似于模型空间中的预测误差协方差矩阵的平方根的倒数的算子。主要变换是地转风增量的减法,双傅立叶变换以及垂直特征向量上的投影。频谱双傅里叶方法允许在有限区域模型中导出不可分离的结构函数。以垂直相关的水平光谱和比例相关的垂直相关性的形式呈现。根据+24小时与+48小时HIRLAM预测之间的差异,同时产生了统计数据。介绍了单次观测影响研究的结果以及使用操作观测得到的同化周期的结果。结果表明,HIRLAM 3D-Var根据所应用的分析结构函数产生同化增量,分析与观测值的拟合度与假定的误差统计量一致。并且同化增量得到了很好的平衡。还显示出与有限面积配方有关的特定问题已得到解决。这些结果以及随附论文的结果表明,3D-Var方案的性能明显优于统计插值方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号